How can product designs
accommodate Fitts’ law?

H ave a look at the calculator illustrated in figure 3.1a. It is a pretty
simple layout—not too many keys to get you confused, all are nicely
labeled, the display is clear, and so on. But, from a motor control point of
view, the layout suffers from a simple design error: all of the keys, regardless
of their frequency of use, are the same size. Why does the 1/x key (which
[ have never used) need to be as large as the = (Enter) key, which [ use on
every calculation? In the calculator shown in figure 3.1b, | tripled the width
of the enter key simply by removing a couple of keys that | never use.
The new design should allow me to work faster with less chance of hitting
the wrong key. The modification reflects an important concept in motor
control: the speed—accuracy trade-off.

Paul Fitts was a pioneer in the study of motor control. His early work
involved the study of errors made by pilots during World War I, and he
was particularly interested in understanding the speed—accuracy trade-
off In various situations. Fitts found that two components of aimed hand
movements were primarily responsible for their speed and accuracy. One
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Figure 3.1 Compare these two calculators. In (a), all the keys are the same size. In
(b), I have removed some keys that | use rarely and increased the size of the Enter
key (which | use often). The rationale is based on Fitts" law.
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component was the distance required for the hand to travel from its starting
point to the target. The other component was the size of the target. In other
words, Fitts studied movements that differed in terms of how far the hand
needed to move and how much tolerance there was for missing the target
once the hand got there. He studied these two components under various
contrived experimental conditions that he could control and manipulate
with precision, such as moving a penlike stylus back and forth between two
rectangular targets, inserting pins into holes, and fitting washers onto pegs,
taking extreme care to systematically vary the sizes of each item.

Fitts told his participants to try very hard never to miss the targets and
examined how they altered their movement times to comply with that
instruction. He found that movement time increased by a constant amount
whenever the distance to move doubled or whenever the size of the target
was reduced by half. In a typical Fitts-type experiment, the average speed
to perform hand movements under various combinations of distance and
size is usually plotted on a graph using average movement time along the
ordinate (vertical axis). For the abscissa (horizontal axis), Fitts devised a
clever measure of the combined difficulty of the task requirements using
a logarithm to the base (2) of the distance and target size (because each
successive data point represents an increase of twice the distance or half the
size). Fitts referred to this measure as the index of difficulty, which is simply

ID = log,(2D/W)

in which ID refers to the index of difficulty, D is the distance to travel from
the home position to the target (or from one target to another target), and
W is the width of the target(s).

Experiments conducted by Fitts, and replicated many times since, revealed
that movement time was a straightforward result of the effects of a task’s
index of difficulty. In fact, the results were so repeatable and generalizable
that the finding has since become known as Fitts’ law. Formally, Fitts™ law is
expressed as follows:

Movement Time = a + b (ID)

This formula is nothing more than a variation of a simple linear equation
(y = a + bx). In Fitts" law, y is replaced by movement time (MT); a is the
expected movement time when x = O (e.g., in the tapping version of the
Fitts’ task this would be a situation in which the subject is tapping up and
down with no endpoint accuracy requirement); b is the slope, or the constant
increment in movement time whenever x is increased by one unit; and x is
replaced by ID, which refers to the index of difficulty, as defined previously.

In the typical Fitts tapping task, a person is asked to move back and forth
as fast as possible between two targets, stopping only long enough to tap
down on a small metal plate, and continues this repetitive back-and-forth
tapping for a period of time, such as 20 seconds. The number of taps is
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counted, and this value is then divided into 20 to calculate the average
movement time per tap. Many trials are conducted to examine various
permutations of the task that are made by varying the size of the targets
and the distance between them. In the end, the data are summarized and
illustrated as in the graph in figure 3.2.

The data represented by the squares and circles in the graph could be
from two different people, or they could represent average group data from
two different age groups, or they might represent data using two different
computer input devices—say, moving a cursor on a screen with a mouse
versus a finger touchpad. It really doesn’t matter what the two sets of data
points represent. Rather, the linear equations represented by the letters
A and B in figure 3.2 indicate that A involves a slower system: system A
has a slope of 50, and system B has a slope of 40. This simply means that
whenever the index of task difficulty is increased by 1 (i.e., by doubling the
distance or halving the target width), movement time is expected to increase
by a constant amount that is equal to the slope (40 or 50 msec for B and A,
respectively). Because the increase is larger for A than for B, system A must
be slower than system B, because its processing speed requires more time
for each additional increase in the ID.

The Fitts task is a specific version of the speed—accuracy trade-off because
it places constraints on the user not to make an error. To comply with
that requirement, the user must slow down when the task becomes more
difficult. Note that A and B in the graph in figure 3.2 could also represent
the calculators in figure 3.1. Because the Enter key for the calculator in
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Figure 3.2 Sample graph from a Fitts-type experiment. The lines denoted by A and
B could represent different people or systems. The steeper slope in line A denotes a
slower processing system.
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figure 3.1a is smaller than that in figure 3.1b, its operator must move slower
than the operator using the calculator in figure 3.1b to maintain the same
error rate.

So, given our knowledge of Fitts’ law and how it affects the speed—
accuracy trade-off in rapid aiming, could we use it to our advantage to
enhance performance? In other words, can we beat Fitts” law? The calculator
example given in figure 3.1 was a simple illustration. By removing a couple
of infrequently used keys and increasing the size of the key used most often,
| have dramatically improved performance by increasing the overall speed
of making calculations while at the same time reducing the probability of
making errors.

Other examples of beating Fitts’ law are all around you. Here are two.
The Apple Macintosh computer desktop has icons that that get larger as
you approach them. This makes them faster to acquire and reduces the
chance of clicking an unwanted icon and opening an application by mistake.
The expanding sizes allow the user to move faster without increasing the
error rate. An example of something that falls prey to Fitts’ law is the typical
computer drop-down menu. Compare the linear and circular (or pie) menus
in figure 3.3. From the starting point denoted by the dot in each figure, you
can see that the distance to reach each successive choice (from one to eight)
gets progressively farther in the linear menu. However, with a central starting
position in the circular (or pie) menu, each choice is equidistant. The pie
menu and the expanding icons used on the Apple Macintosh provide nice
illustrations of how the target size and distance components of Fitts’ law can
be overcome with a little ingenuity.
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Figure 3.3 Circular (pie) drop-down menus reduce the speed of accessing a specific
icon compared to linear menus. This is one way to beat Fitts' law.
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SELF-DIRECTED LEARNING ACTIVITIES

1. Define Fitts” law in your own words.

2. There are several different ways in which speed and accuracy are
traded in order to achieve a desired motor performance. Describe in
your own words which specific version of the speed—accuracy trade-off
is addressed in Fitts’ law.

3. Describe another application (such as redesigning the calculator
keypad or reshaping computer menus) in which you could use the
understanding gained from Fitts’ law to improve movement times,
reduce aiming errors, or both.

4 Sketch combinations of targets and starting positions that correspond
with IDs of 1, 2, 3, 4, and 5, according to Fitts’ law (use appropriate
combinations of target distance and width), and conduct a Fitts-type
experiment, reporting the results as in figure 3.2.

NOTES

* Logarithms to the base 2 (log,) are not difficult to compute. For example,
the log, of 8 is 3—it is simply the number to which the base 2 must be
raised to achieve the target number. In this case, 2 must be raised to the
power of 3 to reach 8 (2° = 8).

* Take note in figure 3.2 that there are two squares and two circles for A
and B corresponding to ID levels of 2, 3, and 4. For example, a task with
a distance of 4 centimeters and a target size of 1 centimeter would have
an ID of 3 because the log, of (2 X 4/ 1) is 3. However, another target
combination in which the distance is twice as far (8 cm) but the target is
also proportionally larger by the same amount (twice as wide—doubling
the target width from 1 ¢m to 2 ¢m, in this case), would also have the
same ID because the log, of (2 X 8 /2] is also 3.
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